MENU

Party Walls

Five Steps to Get Started with Net Zero Energy Buildings

Net zero buildings are becoming increasingly mainstream, with many jurisdictions adopting policies to move towards net zero new construction codes. A good overview of advanced energy codes is available on the Getting to Zero Forum, which includes a snapshot of activity around the country including Washington, DC, New York and Massachusetts.

What Does it Mean to be Net Zero?

The term “net zero” commonly refers to zero-energy buildings. In simple terms, a zero-energy building is one that produces as much energy as it consumes on an annual basis. There can be nuances and caveats to this definition, but for now, we want to bring you up to speed on five key net zero energy strategies to consider if you’re interested in developing a net zero building.

1. Maximize space for on-site renewable energy.

How tall is your building?

  • Any building over five stories will be challenging, if not impossible, to achieve net zero with on-site renewable energy production alone because building energy demand will likely exceed available site area. Maximize your solar with a smart layout and consider if other renewables, such as geothermal, are possible.
Image of roof layout

Typical roof layout for multifamily building, including necessary setbacks for fire access, mechanical equipment access, and shading from bulkheads. Fire access is based on FDNY guidelines.

Do you have other spaces available for solar photovoltaics (PV)?

  • Your development may have a separate parking garage or parking lot on site. These are great places to install a PV system, which can significantly increase the amount of on-site renewable energy production and help make achieving net zero more of a reality.

Do I have to have all renewables on-site to be net zero?

  • If you don’t have enough room for on-site renewables, you can look into purchasing off-site renewable energy options, such as community solar, power purchase agreements, or renewable energy credits.

Now that you’ve considered renewables, let’s move on to net zero building design considerations.

(more…)

20 Years of Wintergreen!

A lot has happened since the start of the WinterGreen newsletter, which was first distributed 20 years ago via fax machine. From the inception of LEED, to the Climate Mobilization Act, WinterGreen has covered it all.

In honor of its anniversary, we are looking back at the milestones that occurred along the way and making predictions for the future…WinterGreen Banner circa 1999

1999 – Steven Winter Becomes Chairman of the US Green Building Council

Image of Steven Winter as USGBC ChairmanAs Chairman of the U.S. Green Building Council from 1999 to 2003, Steven Winter helped guide the organization through a period of immense growth. This included the launch of Leadership in Energy and Environmental Design, also known as the LEED® Rating System, and Greenbuild, the nation’s largest green building conference and expo.

 

2000 – SWA Receives NYSERDA Pioneer Award

Image of Steven Winter with NYSERDA AwardAt a gala event celebrating the 25th anniversary of the New York State Energy Research and Development Authority (NYSERDA), Steven Winter Associates (SWA) was presented with the NYSERDA Pioneer Award for their extensive contributions to making buildings more energy efficient and sustainable.

 

2001 – Green Building Guidelines Book Published for Home Builders

Image of Green Building Guidelines bookIn conjunction with the U.S. Department of Energy (DOE), the National Renewable Energy Lab (NREL), and the Sustainable Buildings Industry Council (SBIC), SWA staff collaborated to create “Green Building Guidelines: Meeting the Demand for Low-Energy, Resource-Efficient Homes.” The book provided green building techniques and strategies for home builders and residential construction professionals.

 

2002 – SWA Helps DEC Become New York State’s First Ever LEED Certified Building

Image of New York DEC Headquarters in AlbanyWorking with NYSERDA, Picotte Companies and WCGS Architects, SWA provided certification support to the design team, earning the project LEED V2.0 Silver. SWA’s services included initial LEED tabulations and goal setting, detailed LEED V2.0 evaluation reporting, and completion of the final documentation package, which led to the certification of New York State’s first ever LEED building.

 

2003 – The Solaire Declared Nation’s First “Green” Residential High-rise

Image of The SolaireNew York Governor George Pataki dedicated The Solaire as the country’s first “green” residential high-rise building, calling it “a benchmark for urban sustainable development and for green buildings worldwide.” SWA supported the design team on this project from conceptual design phase through construction administration. The Solaire, located in New York’s Battery Park City, was the first residential building to be completed in downtown Manhattan after the terrorist attacks of September 2001, and was the first beneficiary of Governor Pataki’s green building tax credit.

 

2004 – SWA Joins Project Team for Oculus Terminal at World Trade Center

Image of World Trade Center PATH TerminalLed by the joint venture of DMJM+Harris and STV, as well as the internationally renowned architect, Santiago Calatrava, SWA was invited to join the project team to provide energy efficiency and sustainable design consulting services for the new World Trade Center station, also known as the the Oculus. The rebuilt PATH terminal is incorporated into the design.

 

2005 – USGBC Announces LEED for Homes Pilot Program

Image of home under constructionExcited to announce the first ever LEED program for residential construction, the USGBC immediately began seeking applicants to test the effectiveness of the all new LEED for Homes through a Pilot Program. LEED for Homes, which is considered a green building milestone, was made possible by a passionate committee of industry professionals co-chaired by Steven Winter.

(more…)

Rapidly Changing Brooklyn Neighborhood Welcomes Affordable and Sustainable Housing Development

image of Livonia Apartments

Courtesy of MAP Architects

The Livonia Apartments is Phase II of an affordable sustainable housing development in the rapidly changing neighborhood of East New York, Brooklyn. Through a partnership with the NYC Department of Housing Preservation and Development (HPD) and the New York City Housing Development Corporation (HDC) and designed by Magnusson Architecture and Planning (MAP), BRP Companies and partners developed this mixed-use, four-building complex to provide 292 apartments of both affordable and supportive housing, including 10% of units specified for persons with disabilities and municipal employees. In addition, Livonia II provides 30,000 square feet of community and retail space for the neighborhood.

The size and density of The Livonia Apartments project represented an opportunity to set a higher benchmark in green design strategies. Mayor Bill di Blasio stated at the groundbreaking, “For decades these vacant lots have been a blight on this neighborhood. Today, we’re breaking ground on a project that will deliver the affordable housing, good local jobs and vital services this community needs. We believe in a city where every neighborhood rises together, and where we make investments that give more people a shot at a better life.” Although the development straddles the busy elevated L & 3 trains and the Livonia Ave. station, the buildings’ facades are angled to minimize the sound and rattle from the trains, while maximizing privacy and natural light.

(more…)

The Impact of Energy Star’s Portfolio Manager August 2018 Updates on NYC’s Local Law 33 Grades

Image of Letter Grades from SmartBuildings.NYC site

Letter grades are coming!

NYC’s building owners and real estate management firms now have one more thing on their plate to consider: Local Law 33 of 2018. LL33 compliance will assign letter grades to buildings required to benchmark energy and water consumption. The energy efficiency score will relate to the Energy Star Rating earned using the U.S. EPA Energy Star Portfolio Manager (PM). The law will come into effect on January 1, 2020, and will utilize the previous year energy data to set the energy efficiency score and letter grade as follows:Picture of Buildings, with quote "Your energy letter grade will be posted in your lobby in 2020. Are you ready?"

A – score is equal to or greater than 85;
B – score is equal to or greater than 70 but less than 85;
C – score is equal to or greater than 55 but less than 70;
D – score is less than 55;
F – for buildings that fail to submit required benchmarking information;
N – for buildings exempted from benchmarking or not covered by the Energy Star program.

Why is my letter grade lower than expected?

Property owners should be made aware that if their property earned an energy efficiency score of 75 for the 2018 Benchmarking filing, the new score for the 2019 benchmarking filing may have fallen as much as 20 points. In LL33 terms, what could have been a letter grade “B” could now be “C” or “D” based on PM updates implemented in August 2018. Property owners will want to learn how the Energy Star PM update will affect their LL33 letter grade.

To understand the correlation and impact that the August 26, 2018 Energy Star PM update will have, it is important to look back at what took place as part of that update. (more…)

Tech Notes: Accessible Parking in Precast Garages

exterior of parking garageWhen designing accessible parking spaces, it is important to remember that the slope of the ground surface for the entire parking space and adjacent access aisle must not exceed 2% in any direction. We frequently see noncompliant slopes at accessible spaces, especially when the ground surface is asphalt or permeable pavers.  The slope along the perimeter of spaces at curbs or gutters is frequently more than 2% at up to 5%, which requires careful detailing and planning on the part of the architect, civil engineer, and on site contractors to ensure that a compliant slope is achieved at the accessible parking spaces. At parking structures and precast garage systems, we have found that important details and coordination needed to achieve compliant ground surface slopes are often overlooked.

 

design plan drawing

Ground surface slopes at walls or parapets often exceed 2%, (blue highlight) resulting in noncompliant slopes at the heads of accessible parking spaces.

In parking structures, it is common for an area along the perimeter of the slab (adjacent to walls or parapets) to slope in excess of 2% for drainage purposes. In some cases, this slope is embedded into the precast system. As a result, accessible parking spaces must be located away from the sloped edges during the initial design phase.

In other cases, noncompliance results from the application of a cast in place (CIP) wash applied to the top of the precast slab. In the detail shown below, note the slope condition at the CIP topping. The wash is often indicated only in section details on the precast drawing set, making it easy to miss if designers are not specifically looking for how these details affect accessible parking spaces. The entire project team involved in the design and/or construction of the garage must be made aware of where accessible parking spaces are located and understand the specific slope requirements to ensure that details are properly coordinated.

design details drawing

The cast in place topping results in a slope of more than 2% at 8.33% at the head of the accessible parking space.

Once the garage is constructed, it is nearly impossible and very costly to fix noncompliant slopes at the head of accessible parking spaces. In some garages, we have been able to solve the problem by shifting the striping at accessible parking spaces. This results in the steeply sloped ground surface being located fully outside of the parking space and access aisle. The problem is that this solution is dependent upon whether the spaces can be shifted without compromising the minimum required width of the drive aisle or obstructing access to other parking spaces.

(more…)

The First Certified Passive House in Southeast Asia – Star Garments Innovation Center

Following up on our blog post in August 2018 – Just Your Typical Blower Door Test… in Sri Lanka – Star Garment Innovation Center – we have exciting news coming out of Sri Lanka. The Star Garments Innovation Center is now officially certified as a Pilot EnerPHit building, the building retrofit standard under the Passive House Institute (PHI).

EnerPHit logo with project details

EnerPHit certification for this project is a milestone achievement on many levels. The Innovation Center is now the first certified Passive House in Southeast Asia and one of only a handful of certified PH projects in tropical climates. PHI deemed the project “a milestone in industrial energy efficient retrofitting in a tropical monsoon climate.” Many of the passive measures employed at the Innovation Center, including continuous exterior insulation, highly efficienct windows, variable refrigerant flow heat pumps for cooling with wrap around heat pipe for enhanced dehumidification capacity, and balanced ventilation with heat recovery can be utilized across all future construction projects in tropical climates. The Passive House team here at SWA is excited to see the potential growth in tropical-climate Passive House construction as a result of the Innovation Center’s success.

But what good is certification if the building doesn’t perform as well as the energy model predicts? Well, we have exciting news on this front too!

At the very start of SWA’s involvement in the project back in the summer of 2016, SWA conducted a utility analysis of the base building prior to any renovations to predict and later verify the energy savings of the Innovation Center by designing to the PH standard. Once the energy model was developed, SWA predicted approximately 50% in energy savings when compared to the previous building’s energy bills.

Fast forward to Fall of 2018 and the building has now been occupied for a full year. The two inevitable questions are:

  1. How much energy is the Innovation Center saving as compared to the previous building?
  2. How does the modeled energy use for the Innovation Center compare to what it is actually using after a full year of occupancy?

(more…)

Environments for Aging: Designing Better Senior Housing

entry way of conference with attendees walking in

The 2019 Environments for Aging Conference took place last month in Salt Lake City, UT.

Last month, I had the opportunity to attend the Environments for Aging conference in Salt Lake City. Hundreds of professionals involved in the complex world of senior living gathered to learn from each other and to explore products and services that are designed for the senior population. It was not surprising to see the level of interest in the event; according to the US Census Bureau, 20 percent of the current US population will be 65 or older by 2029. The Baby Boomer generation, which accounts for the majority of that 20 percent, is moving into their 70s and are beginning to consider how and where they want to age. Some Boomers prefer to remain in their current homes in the communities that they helped build. Others want to move into smaller homes or prefer to transition to senior living communities. Many of these senior living communities are popping up both in suburbia and active urban centers in response to the current trend in senior housing preferences.

There are many senior housing typologies: among the most common are independent living, assisted living, and dementia care. Each type of living arrangement has specific needs that must be addressed from a design perspective.

(more…)

Is It Too Late to Start On My Local Law 87 Compliance for 2019?

Before there was a Green New Deal in New York City, there was Local Law 87, which requires an energy audit and retro-commissioning report to be conducted and filed every 10 years. Yes, it still applies, and yes it will help you to understand the most cost-effective retrofits and upgrades to target for compliance with the city’s new energy efficiency requirements. Thanks for asking!

The question we get most this time of year from owners in NYC is, “My building is due for LL87 compliance this year, is it too late to start?!”

Image of Commercial BuildingsAs spring arrives, building owners often realize that time is quickly running out and this is the year that they must submit their building. Compliance with NYC’s LL87 (Local Law 87) can be overwhelming and hard to navigate but we are here to help.

Not sure if you have to file?  Check here.

LL87 requires that a building undergo an energy audit and retro-commissioning of major mechanical equipment. Keep in mind that it takes time to perform the inspections and testing. In fact, your best bet is to start in the year before your deadline, leaving yourself plenty of time for planning, budgeting, and implementing any corrections that may be required.

(more…)

What Does NYC’s Climate Mobilization Act Mean for Building Owners?

Image of Existing Buildings in NYC

On April 18th, Introduction 1253-2018 was approved by the New York City Council along with several other major pieces of legislation as part of a Climate Mobilization Act. The Urban Green Council describes it as “arguably the most disruptive in our lifetime of the NYC real estate industry.” We agree. While it will take some time to more precisely gauge impact across the industry, here is an initial primer.

Update: On May 18th Intro 1253 was passed into law as Local Law 97 of 2019.

Context

Previous building energy legislation in NYC has focused primarily on providing the market with access to information in the form of benchmarking and audits. In response to increasing demands for more urgent climate action, this new local law will actually require energy performance levels – and significant retrofits in some cases – in most existing buildings over 25,000 square feet between now and 2030 and deeper reductions beyond 2030.

How Does Local Law 97 Work?

The law establishes targets for carbon-emissions intensity per square foot for buildings based on occupancy class. For instance, multifamily buildings, office buildings, schools, and storage facilities will have different intensity targets. Mixed-use buildings will have their targets set based on a weighted average of their different spaces. Across all segments, these targets will get ratcheted down over time. Building on the type of data submitted as part of annual benchmarking, all tenant and owner energy used at a particular building will be converted to carbon intensity per square foot.

Starting in 2024, buildings will be fined on an annual basis for carbon footprint that exceeds their targets. Based on their performance today, approximately 20% of buildings exceed the 2024 – 2029 targets while approximately 75% of buildings exceed the 2030 – 2034 targets, according to the City Council’s press release. As an alternative to this performance-based framework, rent regulated multifamily buildings with at least one rent stabilized apartment will be required to implement a prescriptive list of upgrades by 2024. These upgrades include indoor temperature sensors providing feedback to boilers and apartment thermostatic controls.

What Will It Mean to the Market?

(more…)

Buildings to Cool the Climate

The Intergovernmental Panel on Climate Change (IPCC), viewed as the most credible source of climate change research, issued an alarming report on October 2018 removing all doubt – absent aggressive action the atmosphere will warm up by as much as 2.7 ° F above preindustrial levels by 2040, inundating coastlines and intensifying droughts and poverty. The significance of this report is that the effects of climate change will occur in our lifetime.

The building construction sector has a critical role in drawing down carbon emissions by 2040. As nations all over the globe tackle operational emissions from buildings, we must now address our total emissions impact.

 

graph of estimated cumulative carbon emissiongsi

Life-cycle emissions resulting from buildings consist of two components: operational and embodied. A great deal of effort has been put into reducing the former as it is assumed to be higher than the latter. Studies have revealed the growing significance of embodied emissions in buildings, but its importance is often underestimated in energy efficiency decisions.

According to the Embodied Carbon Review 2018 by Bionova Inc, embodied carbon is the total impact of all the greenhouse gases emitted by the construction and materials of our built environment. Furthermore, during their life-cycle, the same products also cause carbon impacts when maintained, repaired, or disposed of.

(more…)

The owner of this website has made a commitment to accessibility and inclusion, please report any problems that you encounter using the contact form on this website. This site uses the WP ADA Compliance Check plugin to enhance accessibility.