MENU

Party Walls

The Impact of Energy Star’s Portfolio Manager August 2018 Updates on NYC’s Local Law 33 Grades

Image of Letter Grades from SmartBuildings.NYC site

Letter grades are coming!

NYC’s building owners and real estate management firms now have one more thing on their plate to consider: Local Law 33 of 2018. LL33 compliance will assign letter grades to buildings required to benchmark energy and water consumption. The energy efficiency score will relate to the Energy Star Rating earned using the U.S. EPA Energy Star Portfolio Manager (PM). The law will come into effect on January 1, 2020, and will utilize the previous year energy data to set the energy efficiency score and letter grade as follows:Picture of Buildings, with quote "Your energy letter grade will be posted in your lobby in 2020. Are you ready?"

A – score is equal to or greater than 85;
B – score is equal to or greater than 70 but less than 85;
C – score is equal to or greater than 55 but less than 70;
D – score is less than 55;
F – for buildings that fail to submit required benchmarking information;
N – for buildings exempted from benchmarking or not covered by the Energy Star program.

Why is my letter grade lower than expected?

Property owners should be made aware that if their property earned an energy efficiency score of 75 for the 2018 Benchmarking filing, the new score for the 2019 benchmarking filing may have fallen as much as 20 points. In LL33 terms, what could have been a letter grade “B” could now be “C” or “D” based on PM updates implemented in August 2018. Property owners will want to learn how the Energy Star PM update will affect their LL33 letter grade.

To understand the correlation and impact that the August 26, 2018 Energy Star PM update will have, it is important to look back at what took place as part of that update. (more…)

The First Certified Passive House in Southeast Asia – Star Garments Innovation Center

Following up on our blog post in August 2018 – Just Your Typical Blower Door Test… in Sri Lanka – Star Garment Innovation Center – we have exciting news coming out of Sri Lanka. The Star Garments Innovation Center is now officially certified as a Pilot EnerPHit building, the building retrofit standard under the Passive House Institute (PHI).

EnerPHit logo with project details

EnerPHit certification for this project is a milestone achievement on many levels. The Innovation Center is now the first certified Passive House in Southeast Asia and one of only a handful of certified PH projects in tropical climates. PHI deemed the project “a milestone in industrial energy efficient retrofitting in a tropical monsoon climate.” Many of the passive measures employed at the Innovation Center, including continuous exterior insulation, highly efficienct windows, variable refrigerant flow heat pumps for cooling with wrap around heat pipe for enhanced dehumidification capacity, and balanced ventilation with heat recovery can be utilized across all future construction projects in tropical climates. The Passive House team here at SWA is excited to see the potential growth in tropical-climate Passive House construction as a result of the Innovation Center’s success.

But what good is certification if the building doesn’t perform as well as the energy model predicts? Well, we have exciting news on this front too!

At the very start of SWA’s involvement in the project back in the summer of 2016, SWA conducted a utility analysis of the base building prior to any renovations to predict and later verify the energy savings of the Innovation Center by designing to the PH standard. Once the energy model was developed, SWA predicted approximately 50% in energy savings when compared to the previous building’s energy bills.

Fast forward to Fall of 2018 and the building has now been occupied for a full year. The two inevitable questions are:

  1. How much energy is the Innovation Center saving as compared to the previous building?
  2. How does the modeled energy use for the Innovation Center compare to what it is actually using after a full year of occupancy?

(more…)

Linkageless Burner Retrofits for Steam Boilers

Going Beyond Carburetor Technology in the NYS Market

Fun Fact #1: Space heating and domestic hot water generation represent two of the greatest energy end uses in New York State.

Fun Fact #2: More than 70 percent of all New York City buildings utilize steam for space heating.

Background

The clear majority of the distribution systems in these NYC buildings are supplied by high mass steam boiler plants. Digging down a bit further, it is important to note that the most common air:fuel control for these boilers is a mechanical linkage that connects a single servo motor to both the combustion air damper and the fuel control valve(s). We know that adjusting one part of the linkage’s movement affects fuel and air rates elsewhere in the range, making accurate adjustment difficult. We also know that modern linkageless controls use separate servo motors to operate the fuel control valves, combustion air damper, and (in some cases) the flue damper, allowing for finer control.

mechanical linkage system and linkageless system

In fact, SWA recently completed a demonstration study (partially funded through NYSERDA’s Advanced Building Program) to evaluate linkageless burner retrofits on two buildings with respect to energy savings and carbon reductions, as well as qualitative or non-energy benefits. The retrofit materials were funded by Preferred Utilities Manufacturing Corp. of Danbury, CT, who also provided manufacturer’s technical support. The study also focused on quantifying the seasonal efficiency of intermediate-sized, high mass steam boiler plants, which had not previously been studied. The demonstration addresses this gap in the industry’s knowledge.

(more…)

Over Pressure (Part Two)

Welcome back! In Part One we talked about how steam pressure gets too much attention. Controlling pressure for its own sake should never be the end goal—steam pressure is just a means to an end. In this post we’ll discuss one way that controlling steam pressure can be useful—where it can help you balance the system, control the temperature, and yes, save energy.

Two-pipe Steam

The biggest issue plaguing two-pipe steam heating systems are steam traps. Steam traps are supposed to do just that—trap steam—keeping the pressurized steam on the supply side of the system and allowing air and water (i.e., condensate) to pass through into the returns. Keeping the supplies and returns separate is critical, but steam traps are too failure prone to accomplish this reliably.

Radiator steam “trap” failed open

Radiator steam “trap” failed open

At the start of any heating cycle, the system is full of air, which must be removed for steam to enter the heaters. In most two-pipe systems, the steam pushes the air out of the heaters, through the traps, and into the return piping where it eventually exits the system through a vent in a vacuum or condensate tank. That’s what happens when the traps are working. But a failed open trap is no trap at all. It lets the steam flow into the return piping and, with pressure on both the supply and return sides, air is trapped in the system. This affects those farthest from the boiler—the heaters near the ends of the mains and on the top floors—the most.  (And with air trapped inside keeping the metal cold, are they even heaters?)

(more…)

Popular Multifamily Retrofits, Part I

SWA_Multifamily_Retrofits

There is no single retrofit that is a panacea for all multifamily buildings. There are myriad options and permutations for upgrades, the efficacy of which is defined by the operational needs, budget, and goals set by the owner. With that in mind, we will examine six retrofits popular with SWA clients in this three-part blog series. (more…)

The owner of this website has made a commitment to accessibility and inclusion, please report any problems that you encounter using the contact form on this website. This site uses the WP ADA Compliance Check plugin to enhance accessibility.